2017 Zero S Electric Motorcycle
Couple: 146 Nm
Vitesse Maximale: 164 km/h
Autonomie: 170 km
coût: 0,01 €/km
Sélectionner un modèle
Autonomie ZERO S ZF13.0ZERO S ZF13.0 +Power Tank
Ville
Un test d'autonomie en « ville » a pour but de déterminer l'autonomie de conduite durant un « stop-and-go » typique dans les zones urbaines. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982 pour les motos électriques de route qui fournit une base raisonnable et cohérente afin que les fabricants puissent donner aux futurs propriétaires une estimation de l'autonomie de conduite dans les conditions de fonctionnement spécifiées. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
259 km325 km
Autoroute (89 km/h)
Le but est de fournir une autonomie à laquelle les pilotes peuvent s'attendre lorsqu'ils conduisent leur moto sur une route à une vitesse constante de 89 km/h selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
158 km198 km
 » Combiné
La procédure de calcul de l'autonomie combinée « trajets quotidiens sur autoroute » a pour but de déterminer une autonomie de conduite dans les zones urbaines lorsque la conduite se compose de 50 % de « stop-and-go » et de 50 % d'autoroutes urbaines à un degré d'embouteillage qui permet au pilote de rouler à une vitesse presque régulière de 89 km/h. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
196 km246 km
Autoroute (113 km/h)
Le but est de fournir une autonomie à laquelle les pilotes peuvent s'attendre lorsqu'ils conduisent leur moto sur une route à une vitesse constante de 113 km/h selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
130 km163 km
 » Combiné
La procédure de calcul de l'autonomie combinée « trajets quotidiens sur autoroute » a pour but de déterminer une autonomie de conduite dans les zones urbaines lorsque la conduite se compose de 50 % de « stop-and-go » et de 50 % d'autoroutes urbaines à un degré d'embouteillage qui permet au pilote de rouler à une vitesse presque régulière de 113 km/h. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
174 km217 km
Règlement UE 134/2014, Annexe VII
Ce nouvel essai imposé par l'UE (règlement UE 134/2014, Annexe VII) s'effectue à vitesse soutenue et charge simulée sur route plus élevées que dans la norme SAE J2982. L'autonomie réelle dépend des conditions et du mode de conduite.
137 km168 km
Moteur
Couple net
Couple que le moteur peut maintenir après trois minutes de fonctionnement à 80% de la puissance maximale, selon le règlement UNECE n° 85. Le couple de crête est supérieur.
110 Nm110 Nm
Puissance nette
Puissance que le moteur peut maintenir après trois minutes de fonctionnement à 80% de la puissance maximale, selon le règlement UNECE n° 85. La puissance de crête est supérieure.
60 ch (45 kW) @ 5.300 tr/min60 ch (45 kW) @ 5.300 tr/min
Puissance continue
Puissance que le moteur peut maintenir en continu pendant 30 minutes, selon le règlement UNECE n° 85.
28 ch (21 kW) @ 4.300 tr/min28 ch (21 kW) @ 4.300 tr/min
Catégorie de permis de conduire
Le classement des permis de conduire pour les motos équipées d'un moteur à combustion dépend de la puissance maximale. En revanche, les motos électriques sont classées et homologuées en fonction de leur puissance continue. Par conséquent, les motos électriques dont la puissance continue est inférieure à 35 kW et le rapport puissance/poids est inférieur à 0,2 kW/kg peuvent être conduites avec un permis A2.
Permis A2Permis A2
Vitesse maximale
La vitesse maximale est établie selon les règlements standardisés du gouvernement, par le test reconnu dans le cadre de l’homologation. La vitesse réelle supérieure varie plus ou moins en fonction des conditions d'utilisation.
153 km/h153 km/h
Vitesse maximale (soutenue)
La vitesse maximale soutenue est la vitesse que la moto peut conserver pendant une durée prolongée. Cette vitesse maximale soutenue peut varier en fonctions des conditions de circulation.
137 km/h137 km/h
Type Moteur Z-Force® 75-7 sans balai, refroidi passivement par air, haute performance, flux radial, aimants permanents intérieursMoteur Z-Force® 75-7 sans balai, refroidi passivement par air, haute performance, flux radial, aimants permanents intérieurs
Contrôleur
Un contrôleur d'une moto électrique est comparable au système d'injection d'une moto thermique. Il dose précisement la quantité d'electricité de la batterie vers le moteur, en fonction de l'action du pilote sur la poignée d'accélérateur, via un algorithme sophistiqué.
Contrôleur sans balai triphasé à haut rendement, 550 ampères, avec décélération régénérativeContrôleur sans balai triphasé à haut rendement, 550 ampères, avec décélération régénérative
Systéme d'alimentation
Durée de vie théorique à 80 % (ville)

Cela représente la durée de vie prévue de la batterie, jusqu’à 80 % de sa capacité d'origine, lorsque la moto est conduite selon le cycle UDDS "ville" de l'EPA . Une moto électrique peut continuer à fonctionner parfaitement normalement avec une batterie qui a perdu plus de 20 % de sa capacité d’origine. Le seul changement sera une certaine réduction l’autonomie maximale.

La formule qui détermine ce calcul est:
Estimation de la durée de vie de la batterie (miles / km) = (Autonomie EPA UDDS) * (nombre de cycle de vie de la batterie) * (90 %, pour tenir compte de la perte de capacité de 20 % linéaire sur cette durée de vie nominale)

583.000 km732.000 km
Batterie Batterie Z-Force® lithium-ion intelligente intégréeBatterie Z-Force® lithium-ion intelligente intégrée
Capacité maximale

La capacité maximale tend à être la valeur de référence de l'industrie des véhicules électriques pour mesurer la quantité maximale d'énergie qui peut être stockée dans la batterie d'un véhicule.

Qu’est ce qu’un kWh?: Lorsque les véhicules à essence utilisent le litre (ou gallon) pour mesurer la capacité de leurs réservoirs, les véhicules électriques utilisent le kilowattheure (kWh) pour mesurer la capacité totale de d'énergie (ou «carburant») contenue dans la batterie.

La formule qui détermine ce calcul est:
Capacité maximale en kWh = (nombre d'éléments) * (capacité nominale d'éléments en ampère-heure) * (tension nominale d'éléments maximum)

13,0 kWh16,3 kWh
Capacité nominale

La capacité nominale est la mesure la plus précise de la quantité d'énergie utilisable qui peut être stockée dans la batterie d'un véhicule. Elle diffère de la capacité maximale, car elle est calculée en utilisant une tension moyenne, ce qui est plus souvent la «norme», plutôt qu’une tension maximale qui est rarement rencontrée.

Qu’est ce qu’un kWh?: Lorsque les véhicules à essence utilisent le litre (ou gallon) pour mesurer la capacité de leurs réservoirs, les véhicules électriques utilisent le kilowattheure (kWh) pour mesurer la capacité totale de d'énergie (ou «carburant») contenue dans la batterie.

La formule qui détermine ce calcul est:
Capacité maximale en kWh = (nombre d'éléments) * (capacité nominale d'éléments en ampère-heure) * (tension nominale d'éléments maximum)

11,4 kWh14,3 kWh
Type de chargeur 1,3 kW, intégré à bord de la moto1,3 kW, intégré à bord de la moto
Temps de charge (normal)

Temps de recharge habituel avec le chargeur intégré de la moto et une prise électrique standard 110 V ou 230 V.

Veuillez noter que les temps de recharge jusqu'à 95 % sont indiqués pour deux raisons. Premièrement, en cas d'usage ordinaire, il est rare qu'un bloc d'alimentation se décharge jusqu'à 0 %. Deuxièmement, la recharge de 95 % à 100 % prend 30 minutes, quelle que soit la méthode de recharge. Cela vise à maximiser la capacité de la batterie.

8,9 heures (complet) / 8,4 heures (95 % de la capacité)11,0 heures (complet) / 10,5 heures (95 % de la capacité)
 » Avec un chargeur supplémentaire

Les accessoires de recharge évolutifs de Zero Motorcycles permettent aux clients d'ajouter de nombreux chargeurs indépendants (en plus du chargeur embarquée) pour réduire jusqu'à 75 % le temps de recharge, en fonction du modèle et de l'année.

Zero Motorcycles recommande généralement de brancher un seul chargeur sur un circuit, en plus du chargeur à bord de la moto. Brancher plusieurs chargeurs sur un seul circuit risque d'utiliser trop d'électricité et donc d'activer le disjoncteur.

Certains circuits domestiques—y compris en Europe—offrent une capacité suffisante pour plusieurs chargeurs. C'est au client de vérifier que la source de courant est suffisante pour supporter la charge d'un seul ou de plusieurs chargeurs.

Les chargeurs embarqués de Zero Motorcycles consomment jusqu'à 1500 W (Zero S, SR, DS, DSR) ou 800 W (Zero FX, FXS). Les chargeurs externes disponibles en accessoire consomment jusqu'à 1200 W.

5,2 heures (complet) / 4,7 heures (95 % de la capacité)6,4 heures (complet) / 5,9 heures (95 % de la capacité)
 » Avec le maximum de chargeurs supplémentaires

Les accessoires de recharge évolutifs de Zero Motorcycles permettent aux clients d'ajouter de nombreux chargeurs indépendants (en plus du chargeur embarquée) pour réduire jusqu'à 75 % le temps de recharge, en fonction du modèle et de l'année.

Zero Motorcycles recommande généralement de brancher un seul chargeur sur un circuit, en plus du chargeur à bord de la moto. Brancher plusieurs chargeurs sur un seul circuit risque d'utiliser trop d'électricité et donc d'activer le disjoncteur.

Certains circuits domestiques—y compris en Europe—offrent une capacité suffisante pour plusieurs chargeurs. C'est au client de vérifier que la source de courant est suffisante pour supporter la charge d'un seul ou de plusieurs chargeurs.

Les chargeurs embarqués de Zero Motorcycles consomment jusqu'à 1500 W (Zero S, SR, DS, DSR) ou 800 W (Zero FX, FXS). Les chargeurs externes disponibles en accessoire consomment jusqu'à 1200 W.

Pour les motos 2016, le nombre maximal de chargeurs accessoires est :
Zero SR, Zero S, Zero DS, Zero DSR = 4
Zero FX, Zero FXS 6.5 = 4
Zero FX, Zero FXS 3.3 = 2

2,6 heures (complet) / 2,1 heures (95 % de la capacité)3,1 heures (complet) / 2,6 heures (95 % de la capacité)
Entrée Standard 110 V ou 220 VStandard 110 V ou 220 V
Transmission
Transmission Transmission directe sans embrayageTransmission directe sans embrayage
Transmission finale Courroie 130 D / 28 D, Poly Chain® GT® Carbon™Courroie 130 D / 28 D, Poly Chain® GT® Carbon™
Chassis / Suspensions / Freins
Suspension avant Fourche télescopique inversée Showa de 41 mm, avec amortisseur réglable en précontrainte, compression et détenteFourche télescopique inversée Showa de 41 mm, avec amortisseur réglable en précontrainte, compression et détente
Suspension arrière Piston Showa 40 mm, amortisseur avec réservoir externe (Piggy Back) et précontrainte, compression et détente réglablesPiston Showa 40 mm, amortisseur avec réservoir externe (Piggy Back) et précontrainte, compression et détente réglables
Débattement suspension avant
Débattement de la roue, mesuré depuis la tête de fourche.
159 mm159 mm
Débattement suspension arrière
Débattement de la roue, mesuré perpendiculairement au sol.
161 mm161 mm
Freins avant ABS Bosch de la génération 9, étrier flottant à 2 pistons asymétriques J.Juan, disque de frein 320 x 5 mmABS Bosch de la génération 9, étrier flottant à 2 pistons asymétriques J.Juan, disque de frein 320 x 5 mm
Freins arrière ABS Bosch de la génération 9, étrier flottant à simple piston J.Juan, disque de frein 240 x 4,5 mmABS Bosch de la génération 9, étrier flottant à simple piston J.Juan, disque de frein 240 x 4,5 mm
Pneu avant Pirelli Diablo Rosso II 110/70-17Pirelli Diablo Rosso II 110/70-17
Pneu arrière Pirelli Diablo Rosso II 140/70-17Pirelli Diablo Rosso II 140/70-17
Roue avant 3,00 x 173,00 x 17
Roue arrière 3,50 x 173,50 x 17
Dimensions
Empattement
La distance entre le point de contact au sol du pneu avant et le point de contact au sol du pneu arrière, sans aucun poids supplémentaire sur la moto (à vide).
1.410 mm1.410 mm
Hauteur de selle
La distance du sol au sommet de la selle sans aucun poids supplémentaire sur la moto (à vide).
807 mm807 mm
Angle de fourche
À hauteur de chassis (compression de suspension 1/3)
24,0°24,0°
Chasse
À hauteur de chassis (compression de suspension 1/3)
80 mm80 mm
Poids
Châssis 10,4 kg10,4 kg
Poids total 185 kg205 kg
Charge utile 166 kg147 kg
Economie
Equivalent en carburant (cycle urbain)

« Miles par gallon » équivaut (MPGe) indique, via l’agence de protection environnementale (EPA), quelle distance un véhicule électrique peut effectuer avec la même quantité d'énergie que celle contenue dans un gallon d'essence. Les véhicules électriques sont beaucoup plus efficaces que les véhicules utilisant des moteurs à combustion interne (ICE). Un groupe motopropulseur de véhicule électrique utilise généralement plus de 90 % de l'énergie qui lui est fournie en énergie motrice utilisable. Un groupe motopropulseur ICE utilise quand à lui autour de 25-30 % de son énergie fournie en énergie motrice. Le résultat est qu'un groupe motopropulseur de véhicule électrique peut fonctionner avec une efficacité énergétique de plus de 65 % plus élevé que son homologue ICE

La formule qui détermine ce calcul est:

MPGe (cycle urbain) = (Autonomie selon EPA UDDS ) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

MPGe (cycle autoroute) = (Autonomie autoroute) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

0,50 l/100 km0,50 l/100 km
Equivalent en carburant (cycle autoroute)

« Miles par gallon » équivaut (MPGe) indique, via l’agence de protection environnementale (EPA), quelle distance un véhicule électrique peut effectuer avec la même quantité d'énergie que celle contenue dans un gallon d'essence. Les véhicules électriques sont beaucoup plus efficaces que les véhicules utilisant des moteurs à combustion interne (ICE). Un groupe motopropulseur de véhicule électrique utilise généralement plus de 90 % de l'énergie qui lui est fournie en énergie motrice utilisable. Un groupe motopropulseur ICE utilise quand à lui autour de 25-30 % de son énergie fournie en énergie motrice. Le résultat est qu'un groupe motopropulseur de véhicule électrique peut fonctionner avec une efficacité énergétique de plus de 65 % plus élevé que son homologue ICE

La formule qui détermine ce calcul est:

MPGe (cycle urbain) = (Autonomie selon EPA UDDS ) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

MPGe (cycle autoroute) = (Autonomie autoroute) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

0,98 l/100 km0,98 l/100 km
Coût d’une recharge (estimatif)

Cette information indique le coût moyen de recharge pour une batterie complètement déchargée. En pratique, les utilisateurs charge une batterie partiellement déchargées et auront donc un coût de la recharge plus faible. Le coût réel de recharge sera toujours dépendant de la quantité d’énergie chargé dans la batterie et le coût de l'électricité.

La formule qui détermine ce calcul est:
Coût ordinaire de recharge = (coût moyen pour le client par kWh) x (capacité nominale de batterie) / (efficacité de chargement).
L'efficacité de chargement est de 0,94 pour tous les modèles 2013 et ultérieurs.

1,83 €2,28 €
Prix
Prix conseillé
(Le prix inclut la TVA ainsi que les frais de transport jusqu’à votre concessionnaire. À cela peuvent s'ajouter les frais de transport locaux, le contrôle avant livraison et les frais d’immatriculation. Renseignez-vous auprès de votre concessionnaire.)
16.120 € TTC19.140 € TTC
Garantie
Garantie standard sur la moto* 2 ans2 ans
Garantie de la batterie* 5 ans/kilométrage illimité5 ans/kilométrage illimité
* Pour plus d'informations sur la batterie et la garantie standard : Cliquez ici
Les spécifications sont sujets à modifications sans préavis. Images non contractuelles, Zero Motorcycles se réserve le droit de faire des modifications techniques ou esthétiques sans obligation de mettre à niveau les produits vendus précédemment.
Autonomie ZERO S ZF6.5 11 kWZERO S ZF13.0 11 kWZERO S ZF13.0 11 kW +Power Tank
Ville
Un test d'autonomie en « ville » a pour but de déterminer l'autonomie de conduite durant un « stop-and-go » typique dans les zones urbaines. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982 pour les motos électriques de route qui fournit une base raisonnable et cohérente afin que les fabricants puissent donner aux futurs propriétaires une estimation de l'autonomie de conduite dans les conditions de fonctionnement spécifiées. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
130 km259 km325 km
Autoroute (89 km/h)
Le but est de fournir une autonomie à laquelle les pilotes peuvent s'attendre lorsqu'ils conduisent leur moto sur une route à une vitesse constante de 89 km/h selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
79 km158 km198 km
 » Combiné
La procédure de calcul de l'autonomie combinée « trajets quotidiens sur autoroute » a pour but de déterminer une autonomie de conduite dans les zones urbaines lorsque la conduite se compose de 50 % de « stop-and-go » et de 50 % d'autoroutes urbaines à un degré d'embouteillage qui permet au pilote de rouler à une vitesse presque régulière de 89 km/h. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
98 km196 km246 km
Autoroute (113 km/h)
Le but est de fournir une autonomie à laquelle les pilotes peuvent s'attendre lorsqu'ils conduisent leur moto sur une route à une vitesse constante de 113 km/h selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
66 km130 km163 km
 » Combiné
La procédure de calcul de l'autonomie combinée « trajets quotidiens sur autoroute » a pour but de déterminer une autonomie de conduite dans les zones urbaines lorsque la conduite se compose de 50 % de « stop-and-go » et de 50 % d'autoroutes urbaines à un degré d'embouteillage qui permet au pilote de rouler à une vitesse presque régulière de 113 km/h. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
87 km174 km217 km
Règlement UE 134/2014, Annexe VII
Ce nouvel essai imposé par l'UE (règlement UE 134/2014, Annexe VII) s'effectue à vitesse soutenue et charge simulée sur route plus élevées que dans la norme SAE J2982. L'autonomie réelle dépend des conditions et du mode de conduite.
82 km160 km193 km
Moteur
Couple net
Couple que le moteur peut maintenir après trois minutes de fonctionnement à 80% de la puissance maximale, selon le règlement UNECE n° 85. Le couple de crête est supérieur.
106 Nm109 Nm109 Nm
Puissance nette
Puissance que le moteur peut maintenir après trois minutes de fonctionnement à 80% de la puissance maximale, selon le règlement UNECE n° 85. La puissance de crête est supérieure.
44 ch (33 kW) @ 4.400 tr/min59 ch (44 kW) @ 5.800 tr/min59 ch (44 kW) @ 5.800 tr/min
Puissance continue
Puissance que le moteur peut maintenir en continu pendant 30 minutes, selon le règlement UNECE n° 85.
15 ch (11 kW) @ 3.700 tr/min15 ch (11 kW) @ 3.800 tr/min15 ch (11 kW) @ 3.800 tr/min
Catégorie de permis de conduire
Le classement des permis de conduire pour les motos équipées d'un moteur à combustion dépend de la puissance maximale. En revanche, les motos électriques sont classées et homologuées en fonction de leur puissance continue. Par conséquent, les motos électriques dont la puissance continue est inférieure à 35 kW et le rapport puissance/poids est inférieur à 0,2 kW/kg peuvent être conduites avec un permis A2.
Permis A1/B**Permis A1/B**Permis A1/B**
Vitesse maximale
La vitesse maximale est établie selon les règlements standardisés du gouvernement, par le test reconnu dans le cadre de l’homologation. La vitesse réelle supérieure varie plus ou moins en fonction des conditions d'utilisation.
139 km/h139 km/h139 km/h
Vitesse maximale (soutenue)
La vitesse maximale soutenue est la vitesse que la moto peut conserver pendant une durée prolongée. Cette vitesse maximale soutenue peut varier en fonctions des conditions de circulation.
129 km/h129 km/h129 km/h
Type Moteur Z-Force® 75-5 sans balai, refroidi passivement par air, haute performance, flux radial, aimants permanents intérieursMoteur Z-Force® 75-7 sans balai, refroidi passivement par air, haute performance, flux radial, aimants permanents intérieursMoteur Z-Force® 75-7 sans balai, refroidi passivement par air, haute performance, flux radial, aimants permanents intérieurs
Contrôleur
Un contrôleur d'une moto électrique est comparable au système d'injection d'une moto thermique. Il dose précisement la quantité d'electricité de la batterie vers le moteur, en fonction de l'action du pilote sur la poignée d'accélérateur, via un algorithme sophistiqué.
Contrôleur sans balai triphasé à haut rendement, 550 ampères, avec décélération régénérativeContrôleur sans balai triphasé à haut rendement, 550 ampères, avec décélération régénérativeContrôleur sans balai triphasé à haut rendement, 550 ampères, avec décélération régénérative
Systéme d'alimentation
Durée de vie théorique à 80 % (ville)

Cela représente la durée de vie prévue de la batterie, jusqu’à 80 % de sa capacité d'origine, lorsque la moto est conduite selon le cycle UDDS "ville" de l'EPA . Une moto électrique peut continuer à fonctionner parfaitement normalement avec une batterie qui a perdu plus de 20 % de sa capacité d’origine. Le seul changement sera une certaine réduction l’autonomie maximale.

La formule qui détermine ce calcul est:
Estimation de la durée de vie de la batterie (miles / km) = (Autonomie EPA UDDS) * (nombre de cycle de vie de la batterie) * (90 %, pour tenir compte de la perte de capacité de 20 % linéaire sur cette durée de vie nominale)

291.000 km583.000 km732.000 km
Batterie Batterie Z-Force® lithium-ion intelligente intégréeBatterie Z-Force® lithium-ion intelligente intégréeBatterie Z-Force® lithium-ion intelligente intégrée
Capacité maximale

La capacité maximale tend à être la valeur de référence de l'industrie des véhicules électriques pour mesurer la quantité maximale d'énergie qui peut être stockée dans la batterie d'un véhicule.

Qu’est ce qu’un kWh?: Lorsque les véhicules à essence utilisent le litre (ou gallon) pour mesurer la capacité de leurs réservoirs, les véhicules électriques utilisent le kilowattheure (kWh) pour mesurer la capacité totale de d'énergie (ou «carburant») contenue dans la batterie.

La formule qui détermine ce calcul est:
Capacité maximale en kWh = (nombre d'éléments) * (capacité nominale d'éléments en ampère-heure) * (tension nominale d'éléments maximum)

6,5 kWh13,0 kWh16,3 kWh
Capacité nominale

La capacité nominale est la mesure la plus précise de la quantité d'énergie utilisable qui peut être stockée dans la batterie d'un véhicule. Elle diffère de la capacité maximale, car elle est calculée en utilisant une tension moyenne, ce qui est plus souvent la «norme», plutôt qu’une tension maximale qui est rarement rencontrée.

Qu’est ce qu’un kWh?: Lorsque les véhicules à essence utilisent le litre (ou gallon) pour mesurer la capacité de leurs réservoirs, les véhicules électriques utilisent le kilowattheure (kWh) pour mesurer la capacité totale de d'énergie (ou «carburant») contenue dans la batterie.

La formule qui détermine ce calcul est:
Capacité maximale en kWh = (nombre d'éléments) * (capacité nominale d'éléments en ampère-heure) * (tension nominale d'éléments maximum)

5,7 kWh11,4 kWh14,3 kWh
Type de chargeur 1,3 kW, intégré à bord de la moto1,3 kW, intégré à bord de la moto1,3 kW, intégré à bord de la moto
Temps de charge (normal)

Temps de recharge habituel avec le chargeur intégré de la moto et une prise électrique standard 110 V ou 230 V.

Veuillez noter que les temps de recharge jusqu'à 95 % sont indiqués pour deux raisons. Premièrement, en cas d'usage ordinaire, il est rare qu'un bloc d'alimentation se décharge jusqu'à 0 %. Deuxièmement, la recharge de 95 % à 100 % prend 30 minutes, quelle que soit la méthode de recharge. Cela vise à maximiser la capacité de la batterie.

4,7 heures (complet) / 4,2 heures (95 % de la capacité)8,9 heures (complet) / 8,4 heures (95 % de la capacité)11,0 heures (complet) / 10,5 heures (95 % de la capacité)
 » Avec un chargeur supplémentaire

Les accessoires de recharge évolutifs de Zero Motorcycles permettent aux clients d'ajouter de nombreux chargeurs indépendants (en plus du chargeur embarquée) pour réduire jusqu'à 75 % le temps de recharge, en fonction du modèle et de l'année.

Zero Motorcycles recommande généralement de brancher un seul chargeur sur un circuit, en plus du chargeur à bord de la moto. Brancher plusieurs chargeurs sur un seul circuit risque d'utiliser trop d'électricité et donc d'activer le disjoncteur.

Certains circuits domestiques—y compris en Europe—offrent une capacité suffisante pour plusieurs chargeurs. C'est au client de vérifier que la source de courant est suffisante pour supporter la charge d'un seul ou de plusieurs chargeurs.

Les chargeurs embarqués de Zero Motorcycles consomment jusqu'à 1500 W (Zero S, SR, DS, DSR) ou 800 W (Zero FX, FXS). Les chargeurs externes disponibles en accessoire consomment jusqu'à 1200 W.

2,9 heures (complet) / 2,4 heures (95 % de la capacité)5,2 heures (complet) / 4,7 heures (95 % de la capacité)6,4 heures (complet) / 5,9 heures (95 % de la capacité)
 » Avec le maximum de chargeurs supplémentaires

Les accessoires de recharge évolutifs de Zero Motorcycles permettent aux clients d'ajouter de nombreux chargeurs indépendants (en plus du chargeur embarquée) pour réduire jusqu'à 75 % le temps de recharge, en fonction du modèle et de l'année.

Zero Motorcycles recommande généralement de brancher un seul chargeur sur un circuit, en plus du chargeur à bord de la moto. Brancher plusieurs chargeurs sur un seul circuit risque d'utiliser trop d'électricité et donc d'activer le disjoncteur.

Certains circuits domestiques—y compris en Europe—offrent une capacité suffisante pour plusieurs chargeurs. C'est au client de vérifier que la source de courant est suffisante pour supporter la charge d'un seul ou de plusieurs chargeurs.

Les chargeurs embarqués de Zero Motorcycles consomment jusqu'à 1500 W (Zero S, SR, DS, DSR) ou 800 W (Zero FX, FXS). Les chargeurs externes disponibles en accessoire consomment jusqu'à 1200 W.

Pour les motos 2016, le nombre maximal de chargeurs accessoires est :
Zero SR, Zero S, Zero DS, Zero DSR = 4
Zero FX, Zero FXS 6.5 = 4
Zero FX, Zero FXS 3.3 = 2

1,6 heures (complet) / 1,1 heures (95 % de la capacité)2,6 heures (complet) / 2,1 heures (95 % de la capacité)3,1 heures (complet) / 2,6 heures (95 % de la capacité)
Entrée Standard 110 V ou 220 VStandard 110 V ou 220 VStandard 110 V ou 220 V
Transmission
Transmission Transmission directe sans embrayageTransmission directe sans embrayageTransmission directe sans embrayage
Transmission finale Courroie 90 D / 20 D, Poly Chain® HTD® Carbon™Courroie 130 D / 28 D, Poly Chain® GT® Carbon™Courroie 130 D / 28 D, Poly Chain® GT® Carbon™
Chassis / Suspensions / Freins
Suspension avant Fourche télescopique inversée Showa de 41 mm, avec amortisseur réglable en précontrainte, compression et détenteFourche télescopique inversée Showa de 41 mm, avec amortisseur réglable en précontrainte, compression et détenteFourche télescopique inversée Showa de 41 mm, avec amortisseur réglable en précontrainte, compression et détente
Suspension arrière Piston Showa 40 mm, amortisseur avec réservoir externe (Piggy Back) et précontrainte, compression et détente réglablesPiston Showa 40 mm, amortisseur avec réservoir externe (Piggy Back) et précontrainte, compression et détente réglablesPiston Showa 40 mm, amortisseur avec réservoir externe (Piggy Back) et précontrainte, compression et détente réglables
Débattement suspension avant
Débattement de la roue, mesuré depuis la tête de fourche.
159 mm159 mm159 mm
Débattement suspension arrière
Débattement de la roue, mesuré perpendiculairement au sol.
161 mm161 mm161 mm
Freins avant ABS Bosch de la génération 9, étrier flottant à 2 pistons asymétriques J.Juan, disque de frein 320 x 5 mmABS Bosch de la génération 9, étrier flottant à 2 pistons asymétriques J.Juan, disque de frein 320 x 5 mmABS Bosch de la génération 9, étrier flottant à 2 pistons asymétriques J.Juan, disque de frein 320 x 5 mm
Freins arrière ABS Bosch de la génération 9, étrier flottant à simple piston J.Juan, disque de frein 240 x 4,5 mmABS Bosch de la génération 9, étrier flottant à simple piston J.Juan, disque de frein 240 x 4,5 mmABS Bosch de la génération 9, étrier flottant à simple piston J.Juan, disque de frein 240 x 4,5 mm
Pneu avant Pirelli Diablo Rosso II 110/70-17Pirelli Diablo Rosso II 110/70-17Pirelli Diablo Rosso II 110/70-17
Pneu arrière Pirelli Diablo Rosso II 140/70-17Pirelli Diablo Rosso II 140/70-17Pirelli Diablo Rosso II 140/70-17
Roue avant 3,00 x 173,00 x 173,00 x 17
Roue arrière 3,50 x 173,50 x 173,50 x 17
Dimensions
Empattement
La distance entre le point de contact au sol du pneu avant et le point de contact au sol du pneu arrière, sans aucun poids supplémentaire sur la moto (à vide).
1.410 mm1.410 mm1.410 mm
Hauteur de selle
La distance du sol au sommet de la selle sans aucun poids supplémentaire sur la moto (à vide).
807 mm807 mm807 mm
Angle de fourche
À hauteur de chassis (compression de suspension 1/3)
24,0°24,0°24,0°
Chasse
À hauteur de chassis (compression de suspension 1/3)
80 mm80 mm80 mm
Poids
Châssis 10,4 kg10,4 kg10,4 kg
Poids total 142 kg185 kg205 kg
Charge utile 149 kg166 kg147 kg
Economie
Equivalent en carburant (cycle urbain)

« Miles par gallon » équivaut (MPGe) indique, via l’agence de protection environnementale (EPA), quelle distance un véhicule électrique peut effectuer avec la même quantité d'énergie que celle contenue dans un gallon d'essence. Les véhicules électriques sont beaucoup plus efficaces que les véhicules utilisant des moteurs à combustion interne (ICE). Un groupe motopropulseur de véhicule électrique utilise généralement plus de 90 % de l'énergie qui lui est fournie en énergie motrice utilisable. Un groupe motopropulseur ICE utilise quand à lui autour de 25-30 % de son énergie fournie en énergie motrice. Le résultat est qu'un groupe motopropulseur de véhicule électrique peut fonctionner avec une efficacité énergétique de plus de 65 % plus élevé que son homologue ICE

La formule qui détermine ce calcul est:

MPGe (cycle urbain) = (Autonomie selon EPA UDDS ) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

MPGe (cycle autoroute) = (Autonomie autoroute) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

0,50 l/100 km0,50 l/100 km0,50 l/100 km
Equivalent en carburant (cycle autoroute)

« Miles par gallon » équivaut (MPGe) indique, via l’agence de protection environnementale (EPA), quelle distance un véhicule électrique peut effectuer avec la même quantité d'énergie que celle contenue dans un gallon d'essence. Les véhicules électriques sont beaucoup plus efficaces que les véhicules utilisant des moteurs à combustion interne (ICE). Un groupe motopropulseur de véhicule électrique utilise généralement plus de 90 % de l'énergie qui lui est fournie en énergie motrice utilisable. Un groupe motopropulseur ICE utilise quand à lui autour de 25-30 % de son énergie fournie en énergie motrice. Le résultat est qu'un groupe motopropulseur de véhicule électrique peut fonctionner avec une efficacité énergétique de plus de 65 % plus élevé que son homologue ICE

La formule qui détermine ce calcul est:

MPGe (cycle urbain) = (Autonomie selon EPA UDDS ) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

MPGe (cycle autoroute) = (Autonomie autoroute) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

0,98 l/100 km0,98 l/100 km0,98 l/100 km
Coût d’une recharge (estimatif)

Cette information indique le coût moyen de recharge pour une batterie complètement déchargée. En pratique, les utilisateurs charge une batterie partiellement déchargées et auront donc un coût de la recharge plus faible. Le coût réel de recharge sera toujours dépendant de la quantité d’énergie chargé dans la batterie et le coût de l'électricité.

La formule qui détermine ce calcul est:
Coût ordinaire de recharge = (coût moyen pour le client par kWh) x (capacité nominale de batterie) / (efficacité de chargement).
L'efficacité de chargement est de 0,94 pour tous les modèles 2013 et ultérieurs.

0,91 €1,83 €2,28 €
Prix
Prix conseillé
(Le prix inclut la TVA ainsi que les frais de transport jusqu’à votre concessionnaire. À cela peuvent s'ajouter les frais de transport locaux, le contrôle avant livraison et les frais d’immatriculation. Renseignez-vous auprès de votre concessionnaire.)
12.590 € TTC16.120 € TTC19.140 € TTC
Garantie
Garantie standard sur la moto* 2 ans2 ans2 ans
Garantie de la batterie* 5 ans/kilométrage illimité5 ans/kilométrage illimité5 ans/kilométrage illimité
* Pour plus d'informations sur la batterie et la garantie standard : Cliquez ici
** En France, vous pouvez conduire une moto 11 kW avec un permis de conduire B aux conditions suivantes : si le permis B a été obtenu avant 1980 ou si le conducteur a minimum 20 ans et possède son permis depuis au moins 2 ans, après une formation pratique de 7 heures.
Les spécifications sont sujets à modifications sans préavis. Images non contractuelles, Zero Motorcycles se réserve le droit de faire des modifications techniques ou esthétiques sans obligation de mettre à niveau les produits vendus précédemment.
Autonomie ZERO SR ZF13.0ZERO SR ZF13.0 +Power Tank
Ville
Un test d'autonomie en « ville » a pour but de déterminer l'autonomie de conduite durant un « stop-and-go » typique dans les zones urbaines. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982 pour les motos électriques de route qui fournit une base raisonnable et cohérente afin que les fabricants puissent donner aux futurs propriétaires une estimation de l'autonomie de conduite dans les conditions de fonctionnement spécifiées. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
259 km325 km
Autoroute (89 km/h)
Le but est de fournir une autonomie à laquelle les pilotes peuvent s'attendre lorsqu'ils conduisent leur moto sur une route à une vitesse constante de 89 km/h selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
158 km198 km
 » Combiné
La procédure de calcul de l'autonomie combinée « trajets quotidiens sur autoroute » a pour but de déterminer une autonomie de conduite dans les zones urbaines lorsque la conduite se compose de 50 % de « stop-and-go » et de 50 % d'autoroutes urbaines à un degré d'embouteillage qui permet au pilote de rouler à une vitesse presque régulière de 89 km/h. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
196 km246 km
Autoroute (113 km/h)
Le but est de fournir une autonomie à laquelle les pilotes peuvent s'attendre lorsqu'ils conduisent leur moto sur une route à une vitesse constante de 113 km/h selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
130 km163 km
 » Combiné
La procédure de calcul de l'autonomie combinée « trajets quotidiens sur autoroute » a pour but de déterminer une autonomie de conduite dans les zones urbaines lorsque la conduite se compose de 50 % de « stop-and-go » et de 50 % d'autoroutes urbaines à un degré d'embouteillage qui permet au pilote de rouler à une vitesse presque régulière de 113 km/h. Cette estimation est fournie selon la procédure de test d'autonomie de conduite SAE J2982. L'autonomie réelle varie en fonction des conditions et des habitudes de conduite.
174 km217 km
Règlement UE 134/2014, Annexe VII
Ce nouvel essai imposé par l'UE (règlement UE 134/2014, Annexe VII) s'effectue à vitesse soutenue et charge simulée sur route plus élevées que dans la norme SAE J2982. L'autonomie réelle dépend des conditions et du mode de conduite.
128 km170 km
Moteur
Couple net
Couple que le moteur peut maintenir après trois minutes de fonctionnement à 80% de la puissance maximale, selon le règlement UNECE n° 85. Le couple de crête est supérieur.
146 Nm146 Nm
Puissance nette
Puissance que le moteur peut maintenir après trois minutes de fonctionnement à 80% de la puissance maximale, selon le règlement UNECE n° 85. La puissance de crête est supérieure.
69 ch (52 kW) @ 3.850 tr/min69 ch (52 kW) @ 3.850 tr/min
Puissance continue
Puissance que le moteur peut maintenir en continu pendant 30 minutes, selon le règlement UNECE n° 85.
30 ch (22 kW) @ 4.300 tr/min30 ch (22 kW) @ 4.300 tr/min
Catégorie de permis de conduire
Le classement des permis de conduire pour les motos équipées d'un moteur à combustion dépend de la puissance maximale. En revanche, les motos électriques sont classées et homologuées en fonction de leur puissance continue. Par conséquent, les motos électriques dont la puissance continue est inférieure à 35 kW et le rapport puissance/poids est inférieur à 0,2 kW/kg peuvent être conduites avec un permis A2.
Permis A2Permis A2
Vitesse maximale
La vitesse maximale est établie selon les règlements standardisés du gouvernement, par le test reconnu dans le cadre de l’homologation. La vitesse réelle supérieure varie plus ou moins en fonction des conditions d'utilisation.
164 km/h164 km/h
Vitesse maximale (soutenue)
La vitesse maximale soutenue est la vitesse que la moto peut conserver pendant une durée prolongée. Cette vitesse maximale soutenue peut varier en fonctions des conditions de circulation.
153 km/h153 km/h
Type Moteur Z-Force® 75-7R sans balai, refroidi passivement par air, haute performance, flux radial, aimants permanents intérieurs à haute températureMoteur Z-Force® 75-7R sans balai, refroidi passivement par air, haute performance, flux radial, aimants permanents intérieurs à haute température
Contrôleur
Un contrôleur d'une moto électrique est comparable au système d'injection d'une moto thermique. Il dose précisement la quantité d'electricité de la batterie vers le moteur, en fonction de l'action du pilote sur la poignée d'accélérateur, via un algorithme sophistiqué.
Contrôleur sans balai triphasé à haut rendement, 775 ampères, avec décélération régénérativeContrôleur sans balai triphasé à haut rendement, 775 ampères, avec décélération régénérative
Systéme d'alimentation
Durée de vie théorique à 80 % (ville)

Cela représente la durée de vie prévue de la batterie, jusqu’à 80 % de sa capacité d'origine, lorsque la moto est conduite selon le cycle UDDS "ville" de l'EPA . Une moto électrique peut continuer à fonctionner parfaitement normalement avec une batterie qui a perdu plus de 20 % de sa capacité d’origine. Le seul changement sera une certaine réduction l’autonomie maximale.

La formule qui détermine ce calcul est:
Estimation de la durée de vie de la batterie (miles / km) = (Autonomie EPA UDDS) * (nombre de cycle de vie de la batterie) * (90 %, pour tenir compte de la perte de capacité de 20 % linéaire sur cette durée de vie nominale)

583.000 km732.000 km
Batterie Batterie Z-Force® lithium-ion intelligente intégréeBatterie Z-Force® lithium-ion intelligente intégrée
Capacité maximale

La capacité maximale tend à être la valeur de référence de l'industrie des véhicules électriques pour mesurer la quantité maximale d'énergie qui peut être stockée dans la batterie d'un véhicule.

Qu’est ce qu’un kWh?: Lorsque les véhicules à essence utilisent le litre (ou gallon) pour mesurer la capacité de leurs réservoirs, les véhicules électriques utilisent le kilowattheure (kWh) pour mesurer la capacité totale de d'énergie (ou «carburant») contenue dans la batterie.

La formule qui détermine ce calcul est:
Capacité maximale en kWh = (nombre d'éléments) * (capacité nominale d'éléments en ampère-heure) * (tension nominale d'éléments maximum)

13,0 kWh16,3 kWh
Capacité nominale

La capacité nominale est la mesure la plus précise de la quantité d'énergie utilisable qui peut être stockée dans la batterie d'un véhicule. Elle diffère de la capacité maximale, car elle est calculée en utilisant une tension moyenne, ce qui est plus souvent la «norme», plutôt qu’une tension maximale qui est rarement rencontrée.

Qu’est ce qu’un kWh?: Lorsque les véhicules à essence utilisent le litre (ou gallon) pour mesurer la capacité de leurs réservoirs, les véhicules électriques utilisent le kilowattheure (kWh) pour mesurer la capacité totale de d'énergie (ou «carburant») contenue dans la batterie.

La formule qui détermine ce calcul est:
Capacité maximale en kWh = (nombre d'éléments) * (capacité nominale d'éléments en ampère-heure) * (tension nominale d'éléments maximum)

11,4 kWh14,3 kWh
Type de chargeur 1,3 kW, intégré à bord de la moto1,3 kW, intégré à bord de la moto
Temps de charge (normal)

Temps de recharge habituel avec le chargeur intégré de la moto et une prise électrique standard 110 V ou 230 V.

Veuillez noter que les temps de recharge jusqu'à 95 % sont indiqués pour deux raisons. Premièrement, en cas d'usage ordinaire, il est rare qu'un bloc d'alimentation se décharge jusqu'à 0 %. Deuxièmement, la recharge de 95 % à 100 % prend 30 minutes, quelle que soit la méthode de recharge. Cela vise à maximiser la capacité de la batterie.

8,9 heures (complet) / 8,4 heures (95 % de la capacité)11,0 heures (complet) / 10,5 heures (95 % de la capacité)
 » Avec un chargeur supplémentaire

Les accessoires de recharge évolutifs de Zero Motorcycles permettent aux clients d'ajouter de nombreux chargeurs indépendants (en plus du chargeur embarquée) pour réduire jusqu'à 75 % le temps de recharge, en fonction du modèle et de l'année.

Zero Motorcycles recommande généralement de brancher un seul chargeur sur un circuit, en plus du chargeur à bord de la moto. Brancher plusieurs chargeurs sur un seul circuit risque d'utiliser trop d'électricité et donc d'activer le disjoncteur.

Certains circuits domestiques—y compris en Europe—offrent une capacité suffisante pour plusieurs chargeurs. C'est au client de vérifier que la source de courant est suffisante pour supporter la charge d'un seul ou de plusieurs chargeurs.

Les chargeurs embarqués de Zero Motorcycles consomment jusqu'à 1500 W (Zero S, SR, DS, DSR) ou 800 W (Zero FX, FXS). Les chargeurs externes disponibles en accessoire consomment jusqu'à 1200 W.

5,2 heures (complet) / 4,7 heures (95 % de la capacité)6,4 heures (complet) / 5,9 heures (95 % de la capacité)
 » Avec le maximum de chargeurs supplémentaires

Les accessoires de recharge évolutifs de Zero Motorcycles permettent aux clients d'ajouter de nombreux chargeurs indépendants (en plus du chargeur embarquée) pour réduire jusqu'à 75 % le temps de recharge, en fonction du modèle et de l'année.

Zero Motorcycles recommande généralement de brancher un seul chargeur sur un circuit, en plus du chargeur à bord de la moto. Brancher plusieurs chargeurs sur un seul circuit risque d'utiliser trop d'électricité et donc d'activer le disjoncteur.

Certains circuits domestiques—y compris en Europe—offrent une capacité suffisante pour plusieurs chargeurs. C'est au client de vérifier que la source de courant est suffisante pour supporter la charge d'un seul ou de plusieurs chargeurs.

Les chargeurs embarqués de Zero Motorcycles consomment jusqu'à 1500 W (Zero S, SR, DS, DSR) ou 800 W (Zero FX, FXS). Les chargeurs externes disponibles en accessoire consomment jusqu'à 1200 W.

Pour les motos 2016, le nombre maximal de chargeurs accessoires est :
Zero SR, Zero S, Zero DS, Zero DSR = 4
Zero FX, Zero FXS 6.5 = 4
Zero FX, Zero FXS 3.3 = 2

2,6 heures (complet) / 2,1 heures (95 % de la capacité)3,1 heures (complet) / 2,6 heures (95 % de la capacité)
Entrée Standard 110 V ou 220 VStandard 110 V ou 220 V
Transmission
Transmission Transmission directe sans embrayageTransmission directe sans embrayage
Transmission finale Courroie 90 D / 20 D, Poly Chain® HTD® Carbon™Courroie 90 D / 20 D, Poly Chain® HTD® Carbon™
Chassis / Suspensions / Freins
Suspension avant Fourche télescopique inversée Showa de 41 mm, avec amortisseur réglable en précontrainte, compression et détenteFourche télescopique inversée Showa de 41 mm, avec amortisseur réglable en précontrainte, compression et détente
Suspension arrière Piston Showa 40 mm, amortisseur avec réservoir externe (Piggy Back) et précontrainte, compression et détente réglablesPiston Showa 40 mm, amortisseur avec réservoir externe (Piggy Back) et précontrainte, compression et détente réglables
Débattement suspension avant
Débattement de la roue, mesuré depuis la tête de fourche.
159 mm159 mm
Débattement suspension arrière
Débattement de la roue, mesuré perpendiculairement au sol.
161 mm161 mm
Freins avant ABS Bosch de la génération 9, étrier flottant à 2 pistons asymétriques J.Juan, disque de frein 320 x 5 mmABS Bosch de la génération 9, étrier flottant à 2 pistons asymétriques J.Juan, disque de frein 320 x 5 mm
Freins arrière ABS Bosch de la génération 9, étrier flottant à simple piston J.Juan, disque de frein 240 x 4,5 mmABS Bosch de la génération 9, étrier flottant à simple piston J.Juan, disque de frein 240 x 4,5 mm
Pneu avant Pirelli Diablo Rosso II 110/70-17Pirelli Diablo Rosso II 110/70-17
Pneu arrière Pirelli Diablo Rosso II 140/70-17Pirelli Diablo Rosso II 140/70-17
Roue avant 3,00 x 173,00 x 17
Roue arrière 3,50 x 173,50 x 17
Dimensions
Empattement
La distance entre le point de contact au sol du pneu avant et le point de contact au sol du pneu arrière, sans aucun poids supplémentaire sur la moto (à vide).
1.410 mm1.410 mm
Hauteur de selle
La distance du sol au sommet de la selle sans aucun poids supplémentaire sur la moto (à vide).
807 mm807 mm
Angle de fourche
À hauteur de chassis (compression de suspension 1/3)
24,0°24,0°
Chasse
À hauteur de chassis (compression de suspension 1/3)
80 mm80 mm
Poids
Châssis 10,4 kg10,4 kg
Poids total 188 kg208 kg
Charge utile 164 kg144 kg
Economie
Equivalent en carburant (cycle urbain)

« Miles par gallon » équivaut (MPGe) indique, via l’agence de protection environnementale (EPA), quelle distance un véhicule électrique peut effectuer avec la même quantité d'énergie que celle contenue dans un gallon d'essence. Les véhicules électriques sont beaucoup plus efficaces que les véhicules utilisant des moteurs à combustion interne (ICE). Un groupe motopropulseur de véhicule électrique utilise généralement plus de 90 % de l'énergie qui lui est fournie en énergie motrice utilisable. Un groupe motopropulseur ICE utilise quand à lui autour de 25-30 % de son énergie fournie en énergie motrice. Le résultat est qu'un groupe motopropulseur de véhicule électrique peut fonctionner avec une efficacité énergétique de plus de 65 % plus élevé que son homologue ICE

La formule qui détermine ce calcul est:

MPGe (cycle urbain) = (Autonomie selon EPA UDDS ) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

MPGe (cycle autoroute) = (Autonomie autoroute) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

0,50 l/100 km0,50 l/100 km
Equivalent en carburant (cycle autoroute)

« Miles par gallon » équivaut (MPGe) indique, via l’agence de protection environnementale (EPA), quelle distance un véhicule électrique peut effectuer avec la même quantité d'énergie que celle contenue dans un gallon d'essence. Les véhicules électriques sont beaucoup plus efficaces que les véhicules utilisant des moteurs à combustion interne (ICE). Un groupe motopropulseur de véhicule électrique utilise généralement plus de 90 % de l'énergie qui lui est fournie en énergie motrice utilisable. Un groupe motopropulseur ICE utilise quand à lui autour de 25-30 % de son énergie fournie en énergie motrice. Le résultat est qu'un groupe motopropulseur de véhicule électrique peut fonctionner avec une efficacité énergétique de plus de 65 % plus élevé que son homologue ICE

La formule qui détermine ce calcul est:

MPGe (cycle urbain) = (Autonomie selon EPA UDDS ) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

MPGe (cycle autoroute) = (Autonomie autoroute) / (capacité nominale de la batterie) x 33,7 (EPA kWh par gallon d'essence)

0,98 l/100 km0,98 l/100 km
Coût d’une recharge (estimatif)

Cette information indique le coût moyen de recharge pour une batterie complètement déchargée. En pratique, les utilisateurs charge une batterie partiellement déchargées et auront donc un coût de la recharge plus faible. Le coût réel de recharge sera toujours dépendant de la quantité d’énergie chargé dans la batterie et le coût de l'électricité.

La formule qui détermine ce calcul est:
Coût ordinaire de recharge = (coût moyen pour le client par kWh) x (capacité nominale de batterie) / (efficacité de chargement).
L'efficacité de chargement est de 0,94 pour tous les modèles 2013 et ultérieurs.

1,83 €2,28 €
Prix
Prix conseillé
(Le prix inclut la TVA ainsi que les frais de transport jusqu’à votre concessionnaire. À cela peuvent s'ajouter les frais de transport locaux, le contrôle avant livraison et les frais d’immatriculation. Renseignez-vous auprès de votre concessionnaire.)
18.440 € TTC21.460 € TTC
Garantie
Garantie standard sur la moto* 2 ans2 ans
Garantie de la batterie* 5 ans/kilométrage illimité5 ans/kilométrage illimité
* Pour plus d'informations sur la batterie et la garantie standard : Cliquez ici
Les spécifications sont sujets à modifications sans préavis. Images non contractuelles, Zero Motorcycles se réserve le droit de faire des modifications techniques ou esthétiques sans obligation de mettre à niveau les produits vendus précédemment.